Igor's Blog

I've bought this kit a while ago and just left it there due to lack of time to assemble it, but now I've finally been able to put it together and I really like the way it looks. This kit is not for the beginner and you will definitely need SMD soldering gear, but the end result is awesome and totally worth it.

You can get the kit from Bang Good: DIY Aurora LED Color Light Cube Chromatography Glass Clock Kit

At a later time I hacked this kit and replaced the speaker by a LED to stop it from making the loud beeps on the hour. Read this article to find out more!

This is what the assembled product looks like.
IMG_0670.jpg


In case you are wondering what this is, it's a clock! Each of the numbers is represented by a colour with the following table:
 Numbers and Colours
0 - White
1 - Red
2 - Orange
3 - Yellow (greenish yellow)
4 - Green
5 - Greenish cyan
6 - Blueish cyan
7 - Dark blue
8 - Purple
9 - Pink/Magenta


So lets see how this this is assembled. First thing you will notice when you get this kit is it has no instructions. Nothing. You're on your own, unless you go back to the Bang Good website and look through the item description that is. There is an inconspicuous link to an instructions PDF, which seems to have been ripped off another website. In case you are looking for that link, it's this: https://copy.com/vlTwwjUJwlVa7Ojy.

When you unpack the kit, you get the main PCB board, an acrylic base plate, mini-USB cable, glass tubes and all the components packaged together in a zip lock bag. The board virtually has no through-PCB components, most of the parts are SMD type. Naturally the components come in strips in the usual SMD style packaging. I was surprised that the ICs didn't come in any sort of package, they were just thrown in on their own.

IMG_0665.jpg IMG_0667.jpg




The instructions PDF is a bit skimp on information, but basically what you want to do is solder on the USB connector, followed by the can capacitors (the board marks the orientation clearly), then all of the SMD components (resistors, capacitors, voltage controller, transistor, battery holder) and finally the ICs can go in last. Of course since this is all SMD soldering you can apply the solder paste and then heat it up in one go, up to you!

I found the lack of documentation on which resistors were which a bit annoying and had to use this SMD resistor code calculator to figure out a few values. In particular these were the missing values: 1k (102) and 10k (103). The SMD capacitors are not marked, they're they yellowish looking components.

Here are some high-res photos of the soldered-on components to show which ones should be placed where.

CIMG6151.JPG CIMG6152.JPG


CIMG6153.JPG CIMG6154.JPG


The ICs have quite a few pins so be careful.

CIMG6155.JPG CIMG6158.JPG



The photoresistor was a bit tricky to solder on since there is no hole in the PCB for it. I ended up clipping one of the legs short and soldering that on first, then the second leg was clipped and soldered on in a similar fashion.
CIMG6159.JPG


After this I put the speaker in, note the orientation. The Mercury switches went in after this. These are also quite tricky to get right in position since they're surface soldered. The best way I found was to straighten the legs out so they line up to the pads and solder them on flat, then bend the switch into it's 45 degree position.
CIMG6161.JPG


At this point the device can be tested by plugging it in and touching the induction switches on the PCB, if you get a sound from the speaker, you're all good to go on. Unplug the USB cable and continue.

This is also a good time to fit the PCB stand off mounts.
CIMG6162.JPG



The LEDs were next. First the SMD LEDs should be soldered on. Note the orientation of the green dot, it should be on the right hand side when the board is oriented towards you. The RGB leds go in next (longest leg in pin hole marked with a square).

CIMG6163.JPG CIMG6164.JPG


Before fitting the glass covers I wanted to make sure the LEDs were all working, so I did another test run, it was successful...
CIMG6165.JPG


Instead of using a hot glue gun I decided to use 5-minute epoxy resin to fit the glass covers. It dries clear so was a good option.
CIMG6166.JPG



Once the covers were in place and epoxy was dry, the battery could go in and the acrylic plate was mounted into place. The kit didn't come with a battery and it was not labelled what type you actually needed. I worked out the type that's required is a CR1220 3V button cell.

IMG_0678.jpg IMG_0680.jpg


...and that's the end! It took me close to 3 hours to assemble the kit because I had to find out the values of all those SMD components, hopefully anyone reading this will be able to do it quicker by looking at the photos in this article.

Here's a short video of the clock in action...



Open image gallery
for this project for more photos.

The kit is available online here: DIY Aurora LED Color Light Cube Chromatography Glass Clock Kit

-i

, ,
About — I'm an enthusiastic software engineer and consultant interested in many fields including J2EE, programming, electronics, 3D printing, video games, wood working and gardening.
See my Resume for more information.
The views expressed in this blog are my own and not those of my employer.
comments powered by Disqus
My other posts you may like...
Programming, DIY, Games, Hacks, Tech and more.
Follow me on...
Current and Past Projects
See my Resume

Subscribe


RSS Feed

My Other Web Sites

Igor and Elise's Travels
Riverside Expressway Cam
StrFunc() Online
300 George St Blogumentary
Guru JSON-RPC Tester
Extrudifier Object Designer

Recent Blog Posts

Where to find the last item (Robbie's lost lyrics) in GravityFalls Lake level

Detecting print requests to print contents of a DIV with JavaScript

Using Google DFP with AdSense on responsive pages

How to change the email subject line in Gmail

Force PHP GD library to load JPEG images that have invalid data

How to uninstall Samsung Smart Switch from your Mac

Facebook adds weather forecasts but forgets to adjust them to your time zone

No sound or microphone when answering calls on an iPhone

Replacing the standard Odroid XU4 fan and heatsink

PHP PDO doesn't work binding multiple IN statement values

Recent Galleries

Space Food - Chocolate Ice Cream with Chocolate Chips

Legeod Star Wars AT-DP kit

DIY spare parts computer build with a RAIDMAX Anura case

Fake 'Lepin' brand Lego packaging

Hardwood garden bench with clear resin void filler

Fixing a 3D printer extruder that stopped heating up

Easily increase disk space in a Lenovo Ideapad 100S 14" laptop with an M.2 SSD

Making a multi-piece 3D printed solder spool holder stand

DIY indoor apartment grow light wiring

Good Friday Electronics fun Easter Bunny LED PCB Kit IBEABU-01.0

Top Categories

Blogs I follow

Matt Moores Blog
Georgi's FlatPress Guide
Perplexing Permutations
The Security Sleuth

Friends

RAWS Parts Online
Alpha Dimensions Hosting
Kristensen Photography
Ilia Rogatchevski
Travelling Fairy

Blog Activity

Blog Activity
Follow me on... 
     
...or subscribe for updates!

Don't show this again